lnx的定义域 log的定义域是什么

时间:2023-06-20 21:30/span> 作者:tiger 分类: 新知 浏览:9620 评论:0

对数函数y=ln(1/2+x^2/3)的性质及其图像


主要内容:

本文主要介绍函数的y=ln(1/2+x^2/3)的定义域、单调性、凸凹性、极限、奇偶性等性质,并通过导数计算函数的单调区间和凸凹区间,同时简要画出函数的示意图。

※.函数的定义域

根据函数特征,1/2+x^2/3>0,所以函数y=ln(1/2+x^2/3)的定义域为全体实数,即函数的定义域为:(-∞,+∞)。


※.函数的单调性

因为函数y1=lnx在定义域上为增函数,函数y2=1/2+x^2/3为二次函数,当x>0时为增函数,当x<0时为减函数,所以二者的复合函数y=ln(1/2+x^2/3)的单调性与函数y2的函数单调性一致。

本题还可以通过导数知识来解析函数的单调性,步骤如下。

y=ln(1/2+x^2/3),对x求导,有:

dy/dx=(2*x/3)/(1/2+x^2/3)

=4x/(2x^2+3)=4x/(2x^2+3),可知:

(1)当x∈(-∞,0]时,dy/dx<0,此时函数为减函数;

(2)当x∈[0,+∞)时,dy/dx>0,此时函数为增函数。

※.函数的凸凹性

对dy/dx=4x/(2x^2+3)继续求导数,有:

d^2y/dx^2=4*(2x^2+3-x*2*2x)/(2x^2+3)^2,

=-2*(2x^2-3)/(2x^2+3)^2.

令d^2y/dx^2=0,则2x^2-3=0,求出x=±(1/2)√6,此时函数的凸凹性为:

(1)当x∈[-(1/2)√6,(1/2)√6]时,d^2y/dx^2>0,函数为凹函数;

(2)当x∈(-∞,-(1/2)√6∪((1/2)√6,+∞)时,d^2y/dx^2<0,函数为凸函数.


※.函数的奇偶性

∵f(x)=ln(1/2+x^2/3);

∴f(-x)=ln[1/2+(-x)^2/3]=ln(1/2+x^2/3)=f(x),

即函数f(x)为偶函数。


※.函数的极限

Lim(x→-∞) ln(1/2+x^2/3)=+∞;

Lim(x→+∞) ln(1/2+x^2/3)=+∞;


※.函数的示意图

文章评论