平行线的定义 平行线的判定教学反思

时间:2023-04-28 17:07/span> 作者:tiger 分类: 新知 浏览:544 评论:0

一、平行线与相交线

平行线:在同一平面内,不相交的两条直线叫做平行线。

若两条直线只有一个公共点,我们称这两条直线为相交线。

二、余角与补角

1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。

2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。

3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。

4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。

5、余角和补角的性质是证明两角相等的一个重要方法

三、对顶角

1、两条直线相交成四个角,其中不相邻的两个角是对顶角

2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角

3、对顶角的性质:对顶角相等。

4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥梁。

5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。

四、垂线及其性质

1、垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足表示符号“⊥”。

2、垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短

五、同位角、内错角、同旁内角

1、两条直线被第三条直线所截,形成了8个角。(三线八角)

2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。

3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。

4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。

5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。

六、六类角

1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。

2、余角、补角只有数量上的关系,与其位置无关。

3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。

4、对顶角既有数量关系,又有位置关系。

七、平行线的判定方法

1、同位角相等,两直线平行。

2、内错角相等,两直线平行。

3、同旁内角互补,两直线平行。

4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。

5、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行。

八、平行线的性质

1、两直线平行,同位角相等。

2、两直线平行,内错角相等。

3、两直线平行,同旁内角互补。

4、平行线的判定与性质具备互逆的特征。

补充平行线的判定方法:

(1)平行线的定义:如果两条直线没有交点(不相交),那么两直线平行

(2)平行于同一条直线的两直线平行。

几何符号语言:

∵∠3=∠2

∴AB∥CD(同位角相等,两直线平行)

∵∠1=∠2

∴AB∥CD(内错角相等,两直线平行)

∵∠4+∠2=180°

∴AB∥CD(同旁内角互补,两直线平行)

请同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行。平行线的判定是写角相等,然后写平行。

在应用时要正确区分积极向上的题设和结论。

九、尺规作线段和角

1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。

2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。

3、尺规作图中直尺的功能是:

(1)在两点间连接一条线段;

(2)将线段向两方延长。

4、尺规作图中圆规的功能是:

(1)以任意一点为圆心,任意长为半径作一个圆;

(2)以任意一点为圆心,任意长为半径画一段弧;

5、熟练掌握以下作图语言:

(1)作射线××;

(2)在射线上截取××=××;

(3)在射线××上依次截取××=××=××;

(4)以点×为圆心,××为半径画弧,交××于点×;

(5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×;

(6)过点×和点×画直线××(或画射线××);

(7)在∠×××的外部(或内部)画∠×××=∠×××;

6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。

(1)画线段××=××;

(2)画∠×××=∠×××。

文章评论