扇形的周长公式 关于扇形的八个公式

时间:2023-05-04 02:07/span> 作者:tiger 分类: 新知 浏览:4280 评论:0

任意角:

1.确定任意角的关键是看终边旋转的方向和旋转量。

2.要求符合某种条件且与已知角终边相同的角,其方法是先求出与已知角α终边相同的角的一般形式a+ k·360°(k∈Z),再依条件构建不等式求出k的值。

3.终边相同的角的表示。

(1).求终边在某条射线或直线上的角的集合的策略;(1)若所求角β的终边在某条射线上,则集合的形式为{βlβ=k·360°+α,keZ};

(2)若所求角β的终边在某条直线上,则集合的形式为{βlβ=k·180°+α,k∈Z}。

4.区域角是指终边在坐标系的某个区域内的角.表示时可分为三步:

(1)找到区域的起始和终止边界;

(2)由小到大分别标出起始和终止边界对应的 -360°到360°范围内的角α和β,并将该范围内的区域角表示为{xlα<x<β},其中β-α<360°;

(3)起始、终界对应的角再加上360数倍,即得区域角的范围。

弧度制:

6.有关扇形的弧长l,圆心角α(0<α<2π),面积s的题目,一般是知二求一。

7.扇形的周长及面积的最值问题:

(1)当扇形的周长一定时,扇形的面积有最大值其求法是把面积S转化为关于R的二次函数,但要注意R的取值范围,要特别注意扇形的弧长必须满足0<l<2πR。

(2)当扇形的面积一定时,扇形的周长有最小值.其求法是把周长C转化为关于R的函数,但要注意R的取值范围。

文章评论